This tutorial can be downloaded link.

Intro Tutorial 2: Analyzing the Frequency Dependency in GW Calculations

We analyze the frequency dependency of the GW self-energy, by exploring two ways of solving the Quasiparticle equation:

  • without linearization

\begin{align} E-\varepsilon_{KS} = \langle \Sigma(E) -V_{xc} \rangle \end{align}

  • with linearization (first-order expansion of self-energy in the frequency domain)

\begin{align} E-\varepsilon_{KS} = \langle \Sigma(\varepsilon_{KS}) -V_{xc} \rangle + (E-\varepsilon_{KS}) \langle \frac{\partial\Sigma}{\partial E}(\varepsilon_{KS}) \rangle \end{align}

where \(\varepsilon_{KS}\) is the Kohn-Sham energy, and \(E\) is the QP energy obtained at the \(G_0W_0\) level of theory.

After completing step 1 and step 2 of Tutorial 1, we download the following file:

[1]:
%%bash
wget -N -q https://west-code.org/doc/training/silane/wfreq_spec.in

Let’s inspect the wfreq_spec.in file, input for wfreq.x.

[2]:
%%bash
cat wfreq_spec.in
input_west:
    qe_prefix: silane
    west_prefix: silane
    outdir: ./

wstat_control:
    wstat_calculation: S
    n_pdep_eigen: 50

wfreq_control:
    wfreq_calculation: XWGQP
    n_pdep_eigen_to_use: 50
    qp_bandrange: [4,5]
    n_refreq: 2000
    ecut_refreq: 2.0
    ecut_spectralf: [-1.5,0.5]
    n_spectralf: 2000

Run wfreq.x on 2 cores.

[ ]:
%%bash
mpirun -n 2 wfreq.x -i wfreq_spec.in > wfreq_spec.out

The output file wfreq.out contains information about the calculation of the GW self-energy, and the corrected electronic structure can be found in the file <west_prefix>.wfreq.save/wfreq.json.

Below we show how to load and plot the frequency-dependent quasiparticle corrections.

[3]:
import json
import numpy as np

# Load the output data
with open('silane.wfreq.save/wfreq.json') as json_file :
    data = json.load(json_file)

# Extract converged quasiparticle (QP) corrections
k = 1
kindex = f'K{k:06d}'

qp_bands = data['input']['wfreq_control']['qp_bands']
eqp = data['output']['Q'][kindex]

freqlist = np.array(data['output']['P']['freqlist'], dtype='f8')
spf = data['output']['P'][kindex]
[4]:
# Plot
import matplotlib.pyplot as plt

for i, b in enumerate(qp_bands) :

    eks, eqpLin, eqpSec = eqp['eks'][i], eqp['eqpLin'][i], eqp['eqpSec'][i]

    # Print QP corrections
    print (f"{'k':^10} | {'band':^10} | {'eks [eV]':^15} | {'eqpLin [eV]':^15} | {'eqpSec [eV]':^15}")
    print(77*'-')
    print(f'{k:^10} | {b:^10} | {eks:^15.3f} | {eqpLin:^15.3f} | {eqpSec:^15.3f}')

    sigmax, vxcl, vxcnl = eqp['sigmax'][i], eqp['vxcl'][i], eqp['vxcnl'][i]
    sigmac_eks = eqp['sigmac_eks']['re'][i]
    sigmac_eqpLin = eqp['sigmac_eqpLin']['re'][i]
    sigmac_eqpSec = eqp['sigmac_eqpSec']['re'][i]
    z = eqp['z'][i]

    bindex = f'B{b:06d}'
    sigmac = np.array(spf[bindex]['sigmac']['re'], dtype='f8')

    # Left-hand side of QP equation
    plt.plot(freqlist,freqlist-eks,'r-',label=r'$E-\varepsilon_{KS}$')

    # Right-hand side of QP equation without linearization
    plt.plot(freqlist,sigmac+sigmax-vxcl-vxcnl,'b-',label=r'$\Sigma(E)-V_{xc}$')

    # Right-hand side of QP equation with linearization
    plt.plot(freqlist,sigmac_eks+sigmax-vxcl-vxcnl+(1-1/z)*(freqlist-eks),'g-',label=r'$\Sigma^{lin}(E)-V_{xc}$')

    plt.legend()
    plt.title(kindex+" "+bindex)
    plt.xlabel('frequency (eV)')
    plt.ylabel('function (eV)')
    xmin, xmax = min(eks, eqpLin, eqpSec), max(eks, eqpLin, eqpSec)
    ymin, ymax = min(sigmac_eks, sigmac_eqpLin, sigmac_eqpSec), max(sigmac_eks, sigmac_eqpLin, sigmac_eqpSec)
    ymin += sigmax - vxcl -vxcnl
    ymax += sigmax - vxcl -vxcnl
    plt.vlines(x=eks,ymin=ymin-0.2*(ymax-ymin),ymax=ymax+0.2*(ymax-ymin),ls="--")
    plt.vlines(x=eqpLin,ymin=ymin-0.2*(ymax-ymin),ymax=ymax+0.2*(ymax-ymin),ls=":",color="g")
    plt.vlines(x=eqpSec,ymin=ymin-0.2*(ymax-ymin),ymax=ymax+0.2*(ymax-ymin),ls=":",color="b")
    plt.xlim([xmin-0.2*(xmax-xmin),xmax+0.2*(xmax-xmin)])
    plt.ylim([ymin-0.2*(ymax-ymin),ymax+0.2*(ymax-ymin)])
    plt.show()
    k      |    band    |    eks [eV]     |   eqpLin [eV]   |   eqpSec [eV]
-----------------------------------------------------------------------------
    1      |     4      |     -8.231      |     -12.069     |     -11.960
../../_images/tutorials_basic_basic_002_11_1.png
    k      |    band    |    eks [eV]     |   eqpLin [eV]   |   eqpSec [eV]
-----------------------------------------------------------------------------
    1      |     5      |     -0.466      |      0.589      |      0.587
../../_images/tutorials_basic_basic_002_11_3.png

We see that eqpLin (green dotted line) and eqpSec (blue dotted line) correspond to the solution of the Quasiparticle equation with and without linearization of the frequency dependency, respectively.