This tutorial can be downloaded link.
1.0 Getting Started: GW calculation¶
In order to compute the GW electronic structure of the silane molecule
you need to run pw.x
, wstat.x
and wfreq.x
in sequence.
Step 1: Ground State¶
The ground state electronic structure of silane molecule with
QuantumEspresso is obtained by
running pw.x
. The pseudopotential files for Si and H in UPF
format can be downloaded from:
QE-PP database,
or from
SG15
database. Check out the pw.x
input
description in
order to generate an input file for QuantumEspresso called pw.in
.
Download these files in your current working directory:
In [ ]:
%%bash
wget -N -q http://www.west-code.org/doc/training/silane/pw.in
wget -N -q http://www.quantum-simulation.org/potentials/sg15_oncv/upf/H_ONCV_PBE-1.0.upf
wget -N -q http://www.quantum-simulation.org/potentials/sg15_oncv/upf/Si_ONCV_PBE-1.1.upf
Let’s inspect the pw.in
file, input for pw.x
.
In [1]:
%%bash
cat pw.in
&control
calculation = 'scf'
restart_mode = 'from_scratch'
pseudo_dir = './'
outdir = './'
prefix = 'silane'
wf_collect = .TRUE.
/
&system
ibrav = 1
celldm(1) = 20
nat = 5
ntyp = 2
ecutwfc = 25.0
nbnd = 10
assume_isolated ='mp'
/
&electrons
diago_full_acc = .TRUE.
/
ATOMIC_SPECIES
Si 28.0855 Si_ONCV_PBE-1.1.upf
H 1.00794 H_ONCV_PBE-1.0.upf
ATOMIC_POSITIONS bohr
Si 10.000000 10.000000 10.000000
H 11.614581 11.614581 11.614581
H 8.385418 8.385418 11.614581
H 8.385418 11.614581 8.385418
H 11.614581 8.385418 8.385418
K_POINTS {gamma}
Run pw.in
on 2 cores.
In [ ]:
%%bash
mpirun -n 2 pw.x -i pw.in > pw.out
The output file pw.out
contains information about the ground state
calculation.
Step 2: Screening¶
The static dielectric screening is computed using the projective
dielectric eigendecomposition (PDEP) technique. Check out the
wstat.x
input
description and generate
an input file for WEST called wstat.in
.
Download this file in your current working directory:
In [ ]:
%%bash
wget -N -q http://www.west-code.org/doc/training/silane/wstat.in
Let’s inspect the wstat.in
file, input for wstat.x
.
In [2]:
%%bash
cat wstat.in
{
"input_west": {
"qe_prefix": "silane",
"west_prefix": "silane",
"outdir": "./"
},
"wstat_control": {
"wstat_calculation": "S",
"n_pdep_eigen": 50
}
}
Run wstat.in
on 2 cores.
In [ ]:
%%bash
mpirun -n 2 wstat.x -i wstat.in > wstat.out
The output file wstat.out
contains information about the PDEP
iterations, and the dielectric eigenvalues can be found in the file
west_prefix.wstat.save/wstat.json
.
Step 3: GW¶
The GW electronic structure is computed treating the frequency
integration of the correlation part of the self energy with the Contour
Deformation techinique and by computing the dielectric screening at
multipole frequencies with Lanczos iterations. Check out the wfreq.x
input description and
generate an input file for WEST called wfreq.in
.
Download this file in your current working directory:
In [ ]:
%%bash
wget -N -q http://www.west-code.org/doc/training/silane/wfreq.in
Let’s inspect the wfreq.in
file, input for wfreq.x
.
In [3]:
%%bash
cat wfreq.in
{
"input_west": {
"qe_prefix": "silane",
"west_prefix": "silane",
"outdir": "./"
},
"wstat_control": {
"wstat_calculation": "S",
"n_pdep_eigen": 50
},
"wfreq_control": {
"wfreq_calculation": "XWGQ",
"n_pdep_eigen_to_use": 50,
"qp_bandrange": [1,5],
"n_refreq": 300,
"ecut_refreq": 2.0
}
}
Run wfreq.in
on 2 cores.
In [ ]:
%%bash
mpirun -n 2 wfreq.x -i wfreq.in > wfreq.out
The output file wfreq.out
contains information about the GW
self-energy corrected electronic structure can be found in the file
west_prefix.wstat.save/wfreq.json
.
In [ ]: